COURSE NO. - NETWORK THEORY

LTPC 3 0 0 3

Course Objectives:

- To introduce basic laws, mesh & nodal analysis techniques for solving electrical circuits
- To impart knowledge on applying appropriate theorem for electrical circuit analysis
- To explain transient behavior of circuits in time and frequency domains
- To teach concepts of resonance
- To introduce open circuit, short circuit, transmission, hybrid parameters and their interrelationship.

UNIT 1: INTRODUCTION TO ELECTRICAL CIRCUITS

Passive components and their V-I relations, Energy sources - Ideal, Non-ideal, Independent and dependent sources, Source transformation Kirchoff's laws, Star—to-Delta or Delta-to-Star Transformations, Mesh analysis and Nodal analysis problem solving, Super node and Super mesh for DC Excitations.

Unit Outcomes

- Gain knowledge on basic network elements, voltage and current laws
- Apply Kirchhoff's laws, network reduction techniques on simple electrical circuits with dependent & independent sources
- Solve complex circuits using mesh and nodal analysis techniques

UNIT 2: NETWORK THEOREMS

Superposition theorem, Thevenin & Norton theorems, Maximum power transfer theorem, Reciprocity theorem, Millman theorem, Miller Theorem, Compensation theorem - problem solving using dependent sources also, Duality and dual networks.

Unit Outcomes:

- Understand significance of duality and dual networks
- Select appropriate theorem for network simplification
- Determine maximum power transfer to the load

UNIT 3: AC CIRCUITS AND TRANSIENTS

A.C Circuits: Characteristics of Sine wave, phase relation in pure Resistor, Inductor and Capacitor, Impedance, Admittance, Series and Parallel circuits, Power, problem solving using R-L-C elements with DC excitation and AC excitation.

Transients: Steady state and Transient response, DC Response of R-L, R-C and R-L-C, circuits, Sinusoidal Response of R-L, R-C and R-L-C circuit, Circuit elements in S-domain.

domain.

Unit Outcomes:

- Understand behavior of circuit elements under switching conditions
- Analyze response of RL, RC & RLC circuits in time & frequency domains
- Evaluate initial conditions in RL, RC & RLC circuits

UNIT 4: RESONANCE AND COUPLED CIRCUITS

Resonance: Series Resonance, Voltages and Currents in a Series Resonant Circuit, Quality factor and its effect on Bandwidth, Parallel resonance, Magnification.

Coupled Circuits: Introduction to Coupled circuits, Self Inductance Mutual inductance, dot convention, Coefficient of Coupling, Series and Parallel connection of Coupled Coils.

Unit Outcomes:

- Understand magnetically coupled circuits
- Determine resonant frequency and bandwidth of a simple series or parallel RLC circuit
- Determine voltages and currents in a resonant circuit

UNIT 5: TWO PORT NETWORKS & NETWORK FUNCTIONS

Two-Port Networks: Two port networks, Open circuit Impedance (Z) parameters, Short circuit Admittance (Y) parameters, Transmission (ABCD) parameters, Inverse Transmission (A'B'C'D') parameters, Hybrid (h) parameters, Inverse hybrid (g) parameters, Inter- relationships of different parameters, Inter-connection of two-port networks, T and π Representation.

Concept of complex frequency, driving point and transfer functions for one port and two port network, poles & zeros of network functions, Restriction on Pole and Zero locations of network function

Unit Outcomes:

- Determine network parameters for given two port network
- Relate different two port network parameters
- Represent transfer function for the given network

Text Books:

- 1. W. H. Hayt and J. E. Kemmerly, "Engineering Circuit Analysis", McGraw HillEducation, 2013.
- 2. M. E. Van Valkenburg, "Network Analysis", Prentice Hall, 2006.

References:

1. D. Roy Choudhury, "Networks and Systems", New Age International Publications, 1998.

C.A.

- 2. Network lines and Fields by John. D. Ryder 2nd edition, Asia publishing house.
- 3. Joseph Edminister and Mahmood Nahvi, "Electric Circuits", Schaum's Outline Series, Fourth Edition, Tata McGraw Hill Publishing Company, New Delhi, 2003.
- 4. Network Analysis by A. Sudhakar and Shyammohan S palli. McGraw-Hill, 5th Edition.

Course Outcomes:

- Solve network problems using mesh and nodal analysis techniques
- Analyze networks using Thevenin, Norton, Maximum power transfer, Superposition, Miller and Millman theorems
- Compute responses of first order and second order networks using time & frequency domain analysis
- Design resonant circuits for given bandwidth
- Utilize Z, Y, ABCD and h parameters for analyzing two port circuit behavior

and